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Research in Intelligent Systems

• Computer Vision and Pattern Recognition
– Object recognition and image segmentation

– Performance theory and modeling

– Dynamic scene and motion analysis

– Physics-based models and sensor fusion

– Sensor networks

– 3-D model acquisition and refinement from video

– VLSI implementations

– Applications with a variety of sensors
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Research in Intelligent Systems

• Machine Learning and Data Mining
– Synthesizing recognition system architectures,          

features, strategies

– Closed-loop object recognition

– Learning segmentation, feature extraction, 
concepts, recognition strategies

– Behavior learning

– Multi-strategy learning techniques

– Intent recognition

– Complex Pattern Learning
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Research in Intelligent Systems

• Image and Video Databases
– Relevance feedback for feature selection, online 

indexing, content-based image retrieval

– Exploitation of meta knowledge for online indexing, 
perceptual partitioning of databases

– Semantic concept learning from video

– Personalized information synthesis from multi-media 
data

– Uncertainty handling in dynamic databases
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Research in Intelligent Systems

• Biometrics
– Multi-modal  human ID 

- Face (3D) and face profile recognition

- Ear recognition in 3-D

- Gait recognition

- Fingerprint recognition

- Performance prediction and modeling

- Multi-modal biometrics

- Integrated recognition at various levels of access
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Research in Intelligent Systems

Patterns for Network Security
Network Intrusion

- Intrusion detection

- Pattern matching

- Monitoring

- Online corrective actions
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Research in Intelligent Systems
• Sensor Networks
• A wireless networked environment with several 

hundred PTZ color and infrared cameras
• Real-time motion detection at a node
• Dynamic multi-objective optimization for tradeoffs 

between processing, actuation and communication
• Environmental invariance for distributed detection 

and recognition at a distance
• Learning to recognize usual and unusual human 

activities and individuals
• Registration of heterogeneous data and sampling
• Dynamic sensor (imaging and non-imaging) fusion
• 3-D model building of objects 
• Active vision in a networked environment
• Architecture of the system
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Outline of the Presentation
• Moving Object Detection

• Introduction
Background Work
Statistical Background Model Representation

• Evolutionary Sensor Fusion
System Architecture
Physical Models (Visible, Thermal)

• Technical Approach

• Experimental Results

• Conclusions
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Objective and Contributions

Objective: Develop new fusion techniques based on sound 
physical, statistical and evolutionary models to detect 
moving objects in outdoor 24/7 under variety of illumination 
and environmental conditions.

Contributions:
1. It integrates thermal and reflectance physical models into 

a uniform approach for sensor fusion.
2. It develops a novel sensor fusion technique based on 

cooperative coevolutionary computational model, which 
incorporates physical and environmental conditions into 
a new evolutionary dynamic sensor fusion model.

3. It provides analysis and results of moving object 
detection using color and IR video for a full diurnal cycle.
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Moving Object Detection in Video

Many problems make the detection difficult:
– Complexity of the scene

• simple uniform vs. highly textured background 
• moving background (e.g., swaying trees)

– Lighting conditions
• moon light, sun light, fluorescence, colored light

– Weather phenomenon
• rain,     snow,    sudden cloud cover,

– Camera noise and sensitivity
– Time of day

• Sunset, sunrise



11

Moving Object Detection in Video

Example of a moving background:

A pixel

R-B Scatter plot
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Moving Object Detection in Video

Statistical-based approach
Each pixel is viewed as an independent process and its history 
is tracked over time by an independent statistical method.

Examples:
PFINDER, [Pentland, et. al 1997]. designed for indoor, controlled lighting 
illuminations and uses one Gaussian pdf to model the background. 

VSAM [Stauffer, and Grimson, 1998], for tracking people and cars in 
outdoor environment. Uses mixture of Gaussians pdf to model 
background, requires significant statistics and sufficient illumination.

Multistrategy Fusion [Nadimi, and Bhanu, 2001], applies multistrategy
fusion rules including OR, AND and Dempster Shafer method to the 
mixture  of Gaussian model. Performs robust fusion, indoor/outdoor, 
requires sufficient illumination.
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Multisensor Fusion
Multisensor fusion attempts to combine the information 
from all sensors into a unified representation.

Why Sensor Fusion?
Some of the advantages to multisensor fusion are improved detection, 
increased accuracy, reduced ambiguity,          robust operation, 
extended coverage. 

Fusion Methods:
Statistical based: Bayesian – Dempster-Shafer – Fuzzy

AI: Knowledge-based, Rule-based, Information Theoretic

Algorithmic: Graphs, Trees, Tables,  Hough transform

Physics-based: Physics-based approaches utilize the sensor phenomenology 
and are based on sound physical models that can interpret the signal. 
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Adaptive Sensor Fusion Model

ModelsModels
• Statistical
• Physics

Dynamic Sensor FusionDynamic Sensor Fusion
• Evolutionary Model
• Internal Self Evaluation

Sensors Adaptive 
moving 
object detection

Contextual Contextual 
InformationInformation
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Model Representation

Recent history of each pixel {X1,…Xt} is modeled by a mixture of K Gaussians :
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We extend the idea of mixture model in the color to 
both color and infrared (IR). A pixel is then 
represented by a mixture of Gaussians for 4 
channels. <wR1, µR1, σR1, . . ., wRk, µRk, σRk,

wG1, µG1, σG1, . . ., wGk, µGk, σGk,
wB1, µB1, σB1, . . ., wBk, µBk, σBk,
wT1, µT1, σT1, . . ., wTk,µTk, σTk>

W = Prior (weight), µ = Mean, σ = Standard Deviation, R,G,B = Red, Green or Blue channels, 
T = Thermal channel, k = number of Gaussians
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Predictive Physical Models (Illumination)

I = K  L cos(i)Lambertian
Phong I = K  L cos(i)  +  ω cosn(s)

N

i
V

Je s
L

g

Directions: Directions: L = Illumination, N = Normal, V = Viewing, J = Specular
Angles:  Angles:  (s, e, g, i)

I = Intensity, K = Coefficient of reflection

L(λ,l,e,g) = Li(λ,l,e,g) + Lb(λ,l,e,g) = mi(l,e,g) ci(λ) + mb(l,e,g) cb(λ)
Dichromatic

mb

R

mi

Ci

Cb

G
B

Pixel 
colors

We use cb as the surface color invariant
[Nadimi and Bhanu, MFI 2003, PAMI Aug. 2004]

L = total reflected radiance,
Li = reflected radiance at the surface,
Lb = reflected radiance from the body (subsurface), 
mi and mb = geometric terms for the surface and body, 
Ci, and Cb = relative spectral power distribution due to surface, 
and body reflections.



18

Moving Object and Shadow Detection 
(IEEE TPAMI 2004)

% of object  
detected 

(red)

% of 
shadow  
detected 
(green)

Input
Video

43007653603121252Frame # 1076

Example: Date: 10-26-2001; Time: 4:30 p.m.; 
Sun Direction: Right to left; Surface 
Orientation: Flat, Horizontal; Surface Type: 
Grass, Textured Concrete. 

Example: Date: 11-01-2001; 
Time: 4:30 p.m.; Sun Direction: 
Right to left; Surface 
Orientation: Flat, Horizontal, 
Vertical; Surface Type:  Grass, 
Red Tile.

Example: Date: 11-01-2001; 
Time: 3:30 p.m.; Sun Direction: 
Right to left; Surface 
Orientation: Inclined, Curved; 
Surface Type:  Grass.

10
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GAIT - DARPA HumanID Database

An example of color 
image sequence

An example of extracted 
binary silhouette sequence

• Database contains 1870 sequences from 122 subjects
• Database and the extracted silhouette sequences are 

developed by University of South Florida 
http://marathon.csee.usf.edu/GaitBaseline/

100
UCR VISLab
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Gait Energy Representation
(IEEE TPAMI, in Press)

Normalized binary silhouette sequence GEI

Slow 
Walking

Run

• Representation construction
– Silhouette extraction, normalization, alignment and averaging

• Representation properties
– Represents human motion sequence in a single image while 

preserving some temporal information
– Saves both storage space and computation time for recognition 
– Less sensitive to silhouette noise in individual frames

10
UCR VISLab
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DARPA’s HumanID Database
Version 1.7

Grass (Surface), A (Shoe), Left (camera view)71Gallery

Concrete, B, Right44Probe G
Concrete, A, Right70Probe F
Concrete, B, Left44Probe E
Concrete, A, Left70Probe D
Grass, B, Right41Probe C
Grass, B, Left41Probe B

Grass, A, Right71Probe A

Data Recoding ConditionsSize of 
Dataset

Label of 
Dataset

• Evaluate the performance of gait recognition approaches
• Evaluate the effect of environmental condition changes
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Rank1 Performance

0%
20%
40%
60%
80%

100%

A B C D E F G

USF
CMU
UMD
UCR

• Legends
– Rank1: only the first candidate in the rank list is considered
– USF: direct frame shape matching approach (USF website)
– CMU: key frame shape matching approach (AVBPA 03)
– UMD: HMM approach (ICIP 03)
– UCR: our approach (PAMI in Press)

• Observations
– Our approach is better than other approaches on all experiments
– The surface change in A-G results in dramatic performance drop 

(introducing more distortion in the silhouette)
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Rank5 Performance

0%
20%
40%
60%
80%

100%

A B C D E F G

USF
CMU
UMD
UCR

• Legends
– Rank5 – all the first five candidates in the rank list are considered
– USF – direct frame shape matching approach (USF website)
– CMU – key frame shape matching approach (AVBPA 03)
– UMD – HMM approach (ICIP 03)
– UCR – our approach (PAMI in Press)

• Observations
– Our approach is better than other approaches in all experiments 

(silhouette distortion has been considered in synthetic training data)
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Activity recognition in IR video 
(IEEE CVPR OTCBVS 2005)

Walking (noon) Run (noon)

Slow Walking Fast Walking

10
UCR VISLab
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Experiment I (IR): Testing Data II

Walking Run

Slow Walking Fast Walking

Late 
Afternoon

Night

Night

10
UCR VISLab
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Experiment I (IR): Testing Data I

Walking Run

Slow Walking Fast Walking

Noon

Late 
Afternoon

Late 
Afternoon

10
UCR VISLab
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Context-based Recognition
(AVBPA 2005)

Probe Example
without Context

Labels
Gait Classifier #2

Gait Classifier #M

Context LearningContext Learning
Examples

Context Detectors

Detected
Probe

Contexts

Known
Gallery

Contexts

Recognition
Result

-
Gait Classifier #1

...
Classifier

Combination

Environmental contexts: walking surface, carrying objects, recording 
time, etc.

100
UCR VISLab
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Comparison of Low- and high-resolution Images
(AVBPA 2005)

One of the low-resolution face profile image and its edge 
image are resized by using bilinear interpolation. Original 
image size is 70x70.

6 images

One of  the reconstructed high-resolution face profile 
image and its corresponding edge image. The 
resolution is 140x140.
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Audio-Video Fusion (IEEE CVPR OTCBVS 2005)

“Two-person-test1” “Two-person-test2”

“Lab”

“Behind-bush-
test2”

“Behind-bush-
test1”

100
UCR VISLab
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Hierarchical Image Registration Using EC
(GECCO 2005)

Original 
Color Images

Original 
Thermal 
Images

Registered 
Color Images
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Predictive Physical Models (Thermal)

Energy Equilibrium Model
Ein = Eout

Eout = Erad + Ecv + Ecd

Ecd

Tamb

Ein

Z

1089 W/m2

Erad

Air
Ecv

Energy equilibrium model for various energies is solved for 
predicting surface temperature. [Nadimi and Bhanu, MFI 2003]
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Finding the Optimal Mixture Parameters

Many search techniques exist:

•• Brute Force  Brute Force  , , GradientGradient--Based  ,Based  , Heuristics  ,Heuristics  , EMEM

Advantages to evolutionary-based methods:

(1) Ideal for parallel structures , (1) Ideal for parallel structures , 

(2) Do not require complex surface descriptions, (2) Do not require complex surface descriptions, 

(3) Do not require domain specific knowledge,  (3) Do not require domain specific knowledge,  

(4) Do not require measures of goal distance(4) Do not require measures of goal distance
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Updating background models using
Cooperative Coevolution (CC)

Environmental 
Conditions

Collect a window of frames 

Create and initialize 4 subpopulations.
Each subpopulation consists of 
individuals of the form:  

<w1, µ1, σ1, …wk, µk, σk> 

Apply 
Procedure CC ( )

Predictive 
Physical Models

(Visible, Thermal)
[Nadimi, and Bhanu, 
MFI 2003]

Representation of an organism

IR1
IR2
IR3

IR4

IRm

V1
V2
V3

V4

Vm

<wIRk
, µIRk

, σIRk
,…, wVCk

, µVCk
, σVCk

>

IR   = infrared, 
VC = Video Channel ∈ {R,G,B}
k    = number of Gaussians 

output

<wIRk
, µIRk

, σIRk
,…, wVCk

, µVCk
, σVCk

>



34

Comparing Traditional GA with 
Cooperative Coevolution

Procedure CC( )
initialize subpopulations
loop
evaluate organisms (solutions)
store best organism
for each subpopulation

select mating candidates
recombine parents and use their
offsprings as the next generation

end for
until stopping condition
return best organism

Procedure GA( )
initialize population
loop

evaluate individuals
store best individual

select mating candidates
recombine parents and use their
offsprings as the next generation

until stopping condition

return best individual

Important Features of Cooperative Coevolution
• The species cooperate to deliver the final solution. 
• An individual’s fitness depends on its ability to cooperate with the 

context built by the other subpopulations. 
• No need for specifying explicitly the fitness function for each subtask.



35

Idea of Cooperative Coevolution

subpopulation #3

Organisms 
(solution space)

0.734

organism composed of the 
individual to be evaluated 

and the representatives 
from the remaining 

subpopulations

representatives

subpopulation #2subpopulation #1

individual to be 
evaluated
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Example of Evaluating an Individual in the 
Red Channel

Fitness 
Value W1 µ1 σ1 … Wm µm σm

0.8 211 3.2 … 0.1 172 10.2

0.7 189 2.7 … 0.2 99 4.1

. . . … . . .

. . . … . . .

. . . … . . .
0.6 109 1.1 … 0.3 76 8.2

Fitness 
Value W1 µ1 σ1 … Wm µm σm

0.43 0.6 110 1.2 … 0.1 88 91

0.92 0.5 22 9.1 … 0.2 92 4.1

. . . . … . . .

. . . . … . . .

. . . . … . . .
0.19 0.4 75 9.3 … 0.3 82 2.2

Fitness 
Value W1 µ1 σ1 … Wm µm σm

0.52 0.3 21 6.2 … 0.1 46 6.9

0.32 0.7 33 2.7 … 0.2 91 4.5

. . . . … . . .

. . . . … . . .

. . . . … . . .
0.83 0.8 20 1.1 … 0.1 76 3.2

Fitness 
Value W1 µ1 σ1 … Wm µm σm

0.11 0.4 88 4.2 … 0.1 172 10.2

0.89 0.7 90 1.1 … 0.2 2 12.1

. . . . … . .

. . . . … . . .

. . . . … . . .
0.71 0.5 96 9.2 … 0.4 76 8.2

0.6 109 1.1 … 0.3 76 8.2 0.5 22 9.1 … 0.2 92 4.1 0.8 20 1.1 … 0.1 76 3.2 0.7 90 1.1 … 0.2 2 12.1

IR IG

Training Set SS
• Observations
• Predictions
• Classifications

New Fitness Value: 0.23

IB IT

Forganism( )

Note: Individuals with highest fitness value in their population from other 
channels at the previous generation are combined to form an organism 
(solution). The result is stored back for the individual in the red channel.
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Evolutionary Adaptive Background Modeling

T = Training set which includes prediction, observation, and previous 
detection results for each pixel; 

Note: An organism represents a solution.

----------------- Cooperative Coevolution Algorithm ------------------
For each pixel 
Create and initialize 4 subpopulations (one for each channel R, G, B, Thermal)

Loop
Build 4 organisms (e.g., solution space)

Evaluate organisms using the training set T
Store the best organism
For each subpopulation

Evolve each subpopulation (Selection, Mutation, Crossover) 
EndFor

Until stop Condition
Return the best organism

EndFor
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Fitness Function

Let Y represents a channel, Y ∈ {R, G, B, T}
YXobj = Observed value of a pixel X at jth frame for channel Y, j = 1 .. n ; 

n  = Size of the window 

YXpj = Predicted value of a pixel X by physics for the jth frame for channel Y

P(YX) = The probability  distribution function for the pixel X for channel Y 

G =  Training Examples 




=
Foreground   
Background   

G
n
j 0

1

}..1{

Forganism (<IR, IG, IB, IT>) = ¼ [CR F(IR) + CG F(IG) + CB F(IB) + CT F(IT)] 
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Credibility Function

e p job j

P job j
j

p job j

P job j
n

j
j TT

TT
G

TT

TT
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nC 
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−−+
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1

α

α = rate of credibility function,  
n = 20

LOWHIGHForeground

HIGHLOWBackground

Difference of currently observed pixel value with 
the value predicted by Physics

High                                 LowClassification
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Experimental Results

Experimental Setup

Sunrise: East

video

Infrared
Sunset: West
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Parameters Used for the Coevolutionary Algorithm

• number of species = 4; 
• population size = 60; 
• crossover = single point; 
• crossover rate = 0.8; 
• mutation rate = 0.01; 
• maximum number of generations = 60; 
• training data = 20 frames; 
• number of Gaussians per sensor = 3; 
• α = 0.5
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Measurements Used for Thermal Predictions

Am bient and Air Tem p.
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Thermal Prediction

Blue = Measured

Pink = Predicted
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Thermal Prediction

Blue = Measured

Pink = Predicted
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Dichromatic Surface Body Color Estimation

Time
Asphalt Concrete Grass Bush

R G B R G B R G B R G B

8:30 .5727 .5726 .5867 .5813 .582 .5687 .6336 .726 .2672 .5718 .6239 .5327

9:30 .5714 .5716 .5889 .5791 .5797 .5732 .6343 .7189 .2844 .5893 .624 .5132

10:30 .5773 .5714 .5862 .5824 .5824 .567 .6369 .7128 .2938 .5662 .6368 .5234

11:30 .5669 .5676 .597 .5737 .5745 .5838 .632 .7193 .2883 .5476 .625 .5563

12:30 .5695 .5695 .5927 .5686 .5749 .5884 .6256 .7376 .2543 .543 .637 .5471

13:30 .5682 .568 .5954 .5767 .5753 .5801 .6249 .7364 .2591 .5749 .6404 .5093

14:30 .5741 .572 .5859 .5681 .5752 .5886 .621 .7391 .2611 .5968 .6338 .4921

15:30 .5635 .552 .6025 .557 .5723 .6019 .606 .7505 .2636 .5639 .6421 .5193

16:30 .5623 .5684 .6006 .5572 .5802 .594 .604 .7572 .2486 .6567 .6369 .4039

17:30 .5544 .5668 .6095 .5566 .5813 .5935 .6231 .738 .259 .6321 .6357 .4431
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Afternoon Results

16:58:03
Frame # 2408

16:58:34
Frame # 2422

Detected (fusion)Detected (fusion) Detected (fusion)Detected (fusion)
Registered 
Image
(Affine
transformation)

IR
Only

Video
Only
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Evening Results

18:56:11
Frame # 2676

19:04:42
Frame # 2726

Detected (fusion)Detected (fusion) Detected (fusion)Detected (fusion)

Registered 
Image

IR
Only

Video
Only
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Morning Results

06:37:46
Frame # 6792

06:54:27
Frame # 6890

Detected (fusion)Detected (fusion)Detected (fusion)Detected (fusion)

Registered 
Image

IR
Only

Video
Only
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Noon-Early Afternoon Results

11:52:52
Frame # 8646

13:52:29
Frame # 9350

DetectedDetectedDetectedDetected

Registered 
Image

IR
Only

Video
Only
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Performance Evaluation – ROC curves

Early Morning
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Experimental Results - ROC curves

Early Morning Noon

Afternoon

Pd = Probability of detection
Pf = Probability of false alarm
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Conclusions

A novel sensor Fusion is introduced.

Learning is achieved through an evolutionary model.

Statistics and phenomenology of the sensors in the 
visible and longwave IR are integrated through an 
evolutionary computational model.

Fusion model adapts to various illumination conditions 
and is suitable for detection under variety of 
environmental conditions.

Full diurnal (24 hour) cycle result is presented.
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