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@ &"|Research in Intelligent Systems

- Computer Vision and Pattern Recognition

— Object recognition and image segmentation

— Performance theory and modeling

— Dynamic scene and motion analysis

— Physics-based models and sensor fusion

— Sensor networks

— 3-D model acquisition and refinement from video
— VLSI implementations

— Applications with a variety of sensors
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4 .| Research in Intelligent Systems

- Machine Learning and Data Mining

— Synthesizing recognition system architectures,
features, strategies

— Closed-loop object recognition

— Learning segmentation, feature extraction,
concepts, recognition strategies

— Behavior learning
— Multi-strategy learning techniques
— Intent recognition

— Complex Pattern Learning



Gn*ferﬁ, %zarcﬁ

J =0 Pte[[igent

4 .| Research in Intelligent Systems

- Image and Video Databases

— Relevance feedback for feature selection, online
indexing, content-based image retrieval

— Exploitation of meta knowledge for online indexing,
perceptual partitioning of databases

— Semantic concept learning from video

— Personalized information synthesis from multi-media
data

— Uncertainty handling in dynamic databases
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- Biometrics
— Multi-modal human ID

- Face (3D) and face profile recognition
- Ear recognition in 3-D
- Gait recognition
- Fingerprint recognition
- Performance prediction and modeling
- Multi-modal biometrics

- Integrated recognition at various levels of access
S



Research in Intelligent Systems

Patterns for Network Security
Network Intrusion

- Intrusion detection
- Pattern matching
- Monitoring

- Online corrective actions
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--Sensor Networks

A wireless networked environment with several
hundred PTZ color and infrared cameras

 Real-time motion detection at a node

 Dynamic multi-objective optimization for tradeoffs
between processing, actuation and communication

 Environmental invariance for distributed detection
and recognition at a distance

* Learning to recognize usual and unusual human
activities and individuals

« Registration of heterogeneous data and sampling

 Dynamic sensor (imaging and non-imaging) fusion

« 3-D model building of objects

« Active vision in a networked environment

« Architecture of the system 7
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{g[ Outline of the Presentation

. -Moving Object Detection
* Introduction
= Background Work
= Statistical Background Model Representation
« Evolutionary Sensor Fusion
= System Architecture
= Physical Models (Visible, Thermal)
* Technical Approach

 Experimental Results

« Conclusions



Objective and Contributions

Objective: Develop new fusion techniques based on sound

physical, statistical and evolutionary models to detect
moving objects in outdoor 24/7 under variety of illumination
and environmental conditions.

Contributions:

1.

It integrates thermal and reflectance physical models into
a uniform approach for sensor fusion.

It develops a novel sensor fusion technique based on
cooperative coevolutionary computational model, which
Incorporates physical and environmental conditions into
a new evolutionary dynamic sensor fusion model.

It provides analysis and results of moving object

detection using color and IR video for a full diurnal cycle.
9



ent g%earcﬁl
{”gjffjff Moving Object Detection in Video

Many problems make the detection difficult:

— Complexity of the scene
 simple uniform vs. highly textured background
« moving background (e.g., swaying trees)
— Lighting conditions
* moon light, sun light, fluorescence, colored light
— Weather phenomenon
* rain, snow, sudden cloud cover,

- O |-
% CE)C} o
— Camera noise and sensitivity
— Time of day

e Sunset, sunrise

10
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Moving Object Detection in Video

Example of a moving background.:
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L Moving Object Detection in Video

Statistical-based approach
Each pixel is viewed as an independent process and its history
IS tracked over time by an independent statistical method.

Examples:
PFINDER, [Pentland, et. al 1997]. designed for indoor, controlled lighting
illuminations and uses one Gaussian pdf to model the background.

VSAM [Stauffer, and Grimson, 1998], for tracking people and cars in
outdoor environment. Uses mixture of Gaussians pdf to model
background, requires significant statistics and sufficient illumination.

Multistrategy Fusion [Nadimi, and Bhanu, 2001], applies multistrategy
fusion rules including OR, AND and Dempster Shafer method to the
mixture of Gaussian model. Performs robust fusion, indoor/outdoor,
requires sufficient illumination.

12
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Multisensor fusion attempts to combine the information
from all sensors into a unified representation.

Why Sensor Fusion?

Some of the advantages to multisensor fusion are improved detection,
iIncreased accuracy, reduced ambiquity, robust operation,
extended coverage.

Fusion Methods:
Statistical based: Bayesian — Dempster-Shafer — Fuzzy

Al: Knowledge-based, Rule-based, Information Theoretic

Algorithmic: Graphs, Trees, Tables, Hough transform

Physics-based: Physics-based approaches utilize the sensor phenomenology
and are based on sound physical models that can interpret the signal.

13
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Models Dynamic Sensor Fusion
e Statistical b3 * Evolutionary Model >

» Physics  Internal Self Evaluation [NGEINAGE
moving
object detection

Contextual
Information
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Recent history of each pixel {X,,...X\} is modeled by a mixture of K Gaussians :

K 1 (o
P(Xt) — z W . X U(Xt,ﬂi,tp Zi,t) U(Xt ) IL[, 2) = 111 l e_z(xt_ﬂ j (Xt ,Llj
i=1 " 2 2 ‘2‘2

We extend the idea of mixture model in the color to
both color and infrared (IR). A pixel is then

represented by a mixture of Gaussians for 4
channels.

Wr1s HR1s ORqs = + s WRks MRk ORke
)

Wg1s Ugqs Ogqs =+ s Wpis Hpks Opyes

Wr1s Brgs Oqqs =+ =5 Wrolqyo Oqi”

W = Prior (weight), n = Mean, ¢ = Standard Deviation, R,G,B = Red, Green or Blue channels,

T = Thermal channel, k = number of Gaussians 15
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Evolutionary Sensor Fusion
System Diagram
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Predictive Physical Models (lllumination)

Lambertian 1=K L cos(i)

L%
Phong |=K L cos(i) + ® cos"(s) J
| = Intensity, K = Coefficient of reflection
Directions: L = lllumination, N = Normal, V = Viewing, J = Specular
Angles: (s, e, g, i)
Dichromatic
L(2.1,e,g9) = L,(A,1,e,9) + L,(A1,e,9) = m(l,e,g) c,(A) + m,(l.e,g) c,(A)
G
L = total reflected radiance, B Pixel

L, = reflected radiance at the surface,

L, = reflected radiance from the body (subsurface),

m, and m, = geometric terms for the surface and body,

C,, and C, = relative spectral power distribution due to surface,
and body reflections.

colors

We use c, as the surface color invariant

[Nadimi and Bhanu, MFI 2003, PAMI Aug. 2004]

17
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o Klf Moving Object and Shadow Detection

SHsiems (IEEE TPAMI 2004)

Example: Date: 11-01-2001; | Example: Date: 11-01-2001; | Example: Date: 10-26-2001; Time: 4:30 p.m.;
Time: 3:30 p.m.; Sun Direction: | Time: 4:30 p.m.; Sun Direction: | Sun Direction: Right to left; Surface

Right to left; Surface | Right  to  left;  Surface | Orientation: Flat, Horizontal, Surface Type:
Orientation: Inclined, Curved; | Orientation: Flat, Horizontal, | Grass, Textured Concrete.

Surface Type: Grass. Vertical; Surface Type: Grass,
Red Tile.
Frame # 1076 1252 312 360 765 4300

Input
Video

% of
shadow
detected

(green)

% of object
detected
(red)

18
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An example of color An example of extracted
1mage sequence binary silhouette sequence

3

« Database contains 1870 sequences from 122 subjects
« Database and the extracted silhouette sequences are
developed by University of South Florida

http://marathon.csee.usf.edu/GaitBaseline/
19
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Gait Energy Representation
(IEEE TPAMI, in Press)

Normalized binary silhouette sequence

AR
Mo RRAL S

 Representation construction
— Silhouette extraction, normalization, alignment and averaging

 Representation properties

— Represents human motion sequence in a single image while
preserving some temporal information

— Saves both storage space and computation time for recognition

e . . .. . . 20
— Less sensitive to silhouette noise in individual frames
UCR VISLab,

Slow
Walking
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Version 1.7

Label of Size of Data Recoding Conditions
Dataset Dataset

Gallery 71 Grass (Surface), A (Shoe), Left (camera view)
Probe A 71 Grass, A, Right
Probe B 41 Grass, B, Left

Probe C 41 Grass, B, Right
Probe D 70 Concrete, A, Left
Probe E 44 Concrete, B, Left
Probe F 70 Concrete, A, Right
Probe G 44 Concrete, B, Right

« Evaluate the performance of gait recognition approaches
« Evaluate the effect of environmental condition changes

21



KI Rank1 Performance

100%
80% - B USF
60% - B CMU
40% - O UMD
20% - O UCR
0% -
A B C D E F G
« Legends

— Rank1: only the first candidate in the rank list is considered
— USEF: direct frame shape matching approach (USF website)
— CMU: key frame shape matching approach (AVBPA 03)
— UMD: HMM approach (ICIP 03)
— UCR: our approach (PAMI in Press)
« Observations
— Our approach is better than other approaches on all experiments
— The surface change in A-G results in dramatic performance drop
(introducing more distortion in the silhouette)
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100%
80% - B USF
60% - B CMU
40% - L1 UMD
20% - O UCR
0% -
A B C D E F G
 Legends

— Rank5 — all the first five candidates in the rank list are considered
— USF - direct frame shape matching approach (USF website)
— CMU - key frame shape matching approach (AVBPA 03)
— UMD — HMM approach (ICIP 03)
— UCR - our approach (PAMI in Press)
Observations
— Our approach is better than other approaches in all experiments
(silhouette distortion has been considered in synthetic training data)

23



Activity recognition in IR video
(IEEE CVPR OTCBVS 2005)

Walking (noon) Run (noon)

Slow Walking Fast Walking

UCR N

VISLahb,



Experiment | (IR): Testing Data Il

Walking Run
Slow Walking Fast Walking
Late |
Afternoon

Night
| g .
Night '
| < g
UCR

VISLahb,




Experiment | (IR): Testing Data |

Walking Run
Slow Walking Fast Walking
o “ “ “ “ “ [l
Late
Afternoon
Late
Afternoon

L[R2
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Klﬁﬂ Context-based Recognition
) Gustens (AVBPA 2005)

Context Learning
Examples

Context Learning | Detected Known
¢ Probe Gallery
Contexts

Contexts
—P»| Context Detectors —}?{——

—p»| Gait Classifier #1 P>

Probe Example

Recognition

With(zltbclonteXt —»| Gait Classifier #2 ¥  (lassifier Result
abels

Combination

——P»| Gait Classifier #M P>

Environmental contexts: walking surface, carrying objects, recording
time, etc.

27
UCR VISLabu




CrofRet | Comparison of Low- and high-resolution Images

nte[fzgent

Sym (AVBPA 2005)

One of the low-resolution face profile image and its edge
image are resized by using bilinear interpolation. Original
image size is 70x70.

6 images

One of the reconstructed high-resolution face profile
image and its corresponding edge image. The

resolution is 140x140. 28
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“Two-person-test1” “Two-person-test2”
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Hierarchical Image Registration Using EC
(GECCO 2005)

Original

Color Images |=

Original
Thermal
Images

Registered
Color Images




' mKeiearcﬁ
n

ﬁte[(igent

Sysiems

Predictive Physical Models (Thermal)

Energy Equilibrium Model
Ein = Eout

Eout = Erad + Ecv + Ecd
S §-1089 W/m?

SR \\\‘:Ein ‘ .

A

4

rad

i

IS
N

Energy equilibrium model for various energies is solved for
predicting surface temperature. [Nadimi and Bhanu, MFI 2003]

Air

———~

/\_/\}

T

amb

vy

% ECV
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T+ Finding the Optimal Mixture Parameters

Syst ms

Many search techniques exist:

 Brute Force , Gradient-Based , Heuristics , EM

Advantages to evolutionary-based methods:

(1) Ideal for parallel structures ,

(2) Do not require complex surface descriptions,
(3) Do not require domain specific knowledge,

(4) Do not require. measures of goal distance
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Systens Cooperative Coevolution (CC)

CKﬁ Updating background models using

e

Collect a window of frames

Predictive Representation of an organism
Physical Models
(Visible, Thermal) /\
[Nadimi, and Bhanu, App]y \
—>
MFT2003] Procedure CC () //
Create and initialize 4 subpopulations. IR, | Y.
Each subpopulation consists of IR, | V2
individuals of the form: R, V3 <Wigs Higg> Oiyor+es Wycy By Oye, ™
Wy, By, O - W, Hy, O : | ’
: I:R ¥ v IR = infrared,
output \_ " ") VC= Video Channel S {R,G,B}
v k = number of Gaussians

<Wir,> MR O1Rp e+ Wy Bvep Ove ™

33
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Sysfm Cooperative Coevolution
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Procedure GA()
initialize population
loop
evaluate individuals
store best individual

select mating candidates

recombine parents and use their

offsprings as the next generation
until stopping condition

return best individual

Important Features of Cooperative Coevolution

» The species cooperate to deliver the final solution.

» An individual’s fitness depends on its ability to cooperate with the
context built by the other subpopulations.

* No need for specifying explicitly the fithess function for each subtask.

34
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G Idea of Cooperative Coevolution

{7 ‘ 1.‘.

e

Organisms subpopulation #1 subpopulation #2
(solution space)

% \"3}
_,\
. &\ .
A
&\
A
LR

individual to be
evaluated

S |

organism composed of the
individual to be evaluated
and the representatives
from the remaining &~
subpopulations

subpopulation #3

35



C”””K;ﬁf%m Example of Evaluating an Individual in the
B G Red Channel

Fit Fit Fitness
\ll:lises Wl fo | W e | o \II:ITJ? mboo b IWal bl On ] value Wl boo - Wl o
08 f2t1f320 ... o1 i172002]]| 043 20 62 ... o1 fas 6o 011 Joafss a2l ... o1 fin2fio2
0781898278 ... 1020 99 |41 0.92 3342790 ... 02091 f45 0.89 0709 11l ..002 2 1121
/
A/
06 Jroof i .. fo3] 76821l o019 2011 ... Joif 76|32 071 DosBos lool '10.4 76 1 32
Ir Ic Is It
/- N Ys Yd | 4 I
_ 0.8 20 1.1 - 0.1 76 3.2 0.7 90 1.1 o 0.2 2 12.1
\\~ —’l
—~~\"’—
l Training Set S
New Fitness Value: 0.23  Observations
Forganism( ) * Predictions

* Classifications

Note: Individuals with highest fithess value in their population from other
channels at the previous generation are combined to form an organism 36
(solution). The result is stored back for the individual in the red channel.
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Evolutionary Adaptive Background Modeling

T

R Vi
SR
568

T = Training set which includes prediction, observation, and previous
detection results for each pixel;

Note: An organism represents a solution.

Cooperative Coevolution Algorithm

For each pixel
Create and initialize 4 subpopulations (one for each channel R, G, B, Thermal)
Loop
Build 4 organisms (e.g., solution space)

Evaluate organisms using the training set T

Store the best organism
For each subpopulation
Evolve each subpopulation (Selection, Mutation, Crossover)
EndFor
Until stop Condition
Return the best organism
EndFor
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Let Y represents a channel, Y € {R, G, B, T}
' YXObJ = Observed value of a pixel X at j" frame for channel Y, j=1..
n = Size of the window

Y,.. = Predicted value of a pixel X by physics for the j" frame for channel Y

Xpj

P(Y,) = The probability distribution function for the pixel X for channel Y

B {1 Background

G = Training Examples
9 P 0 Foreground

F o roanism (<Ig, Iy Ig, 11>) =74 [C F(Ip) + C () + Cy F(p) + Cp F(Ip)]
1 n
F(ly) = — GIP(Yigp ) + (1= Go)(1 = P(Yxgp )]

j=1

38
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KI% Credibility Function

551“2?!15

n

7,75 7,75
b; 4P b; 4P
e 12 Gj#-i-(l—Gj)(l—#)
C = e | "= T, Top; +T,

o = rate of credibility function,

n =20
Difference of currently observed pixel value with
the value predicted by Physics
Classification High Low
Background LOW HIGH
Foreground HIGH LOW

39



C”
{

ter

eseanﬁ

nte[hgent

Sys tems

Experimental Results

Experimental Setup

Sunrise: East

video

Infrared

4,

Sunset: West
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INA
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K T+l Parameters Used for the Coevolutionary Algorithm

Sy tems

number of species = 4;
population size = 60;
crossover = single point;

crossover rate = 0.8;

mutation rate = 0.01;

maximum number of generations = 60;

training data = 20 frames;

number of Gaussians per sensor = 3;
e a=0.5

41
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53’5 tems

Ambient and Air Temp.

300

295

& 290 -

Q. 4

5285

280 A

275
270*mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
©O N I ©W 0O O N ¥ © 0 O NN ¥ © o O
< - 9 - ¥ N O N O N O O o nm o <
TerE2RAQ - Yy erogdo

42



Thermal Prediction
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Measured Vs, Predictedd Tenps.
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Dichromatic Surface Body Color Estimation

yS tems
Asphalt Concrete Grass Bush

Time

R G B R G B R G B R G B
8:30 5727 5726 5867 .5813 .582 .5687 6336 726 2672 .5718 .6239 .5327
9:30 5714 5716 5889 5791 5797 5732 6343 7189 2844 .5893 .624 .5132
10:30 5773 5714 5862 .5824 .5824 .567 6369 7128 2938 .5662 .6368 .5234
11:30 5669 5676 597 5737 5745 .5838 632 7193 2883 .5476 .625 .5563
12:30 5695 5695 5927 .5686 5749 .5884 6256 7376 2543 .543 .637 .5471
13:30 5682 568 5954 5767 5753 .5801 6249 7364 2591 .5749 .6404 .5093
14:30 5741 572 5859 .5681 5752 .5886 621 7391 2611 .5968 .6338 4921
15:30 .5635 .552 .6025 .557 .5723 .6019 .606 .7505 .2636 .5639 .6421 .5193
16:30 5623 5684 .6006 .5572 .5802 .594 604 7572 2486 .6567 .6369 4039
17:30 5544 .5668 6095 .5566 .5813 .5935 6231 738 .259 .6321 .6357 4431

45
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Sy“ﬂ Afternoon Results
16:58:03 16:58:34
Frame # 2408 Frame # 2422
Detected (fusion) Detected (fusion)
Registered ' Fem= 0 |
Image
(Affine
transformation) &
IR
Only
Video
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18:56:11 19:04:42
Frame # 2676 Frame # 2726
Detected (fusion) Detected (fusion)
Registered £
Image |
IR —— |




Morning Results

06:37:46 06:54:27
Frame # 6792 Frame # 6890
Detected (fusion) Detected (fusion)

Registered
Image

IR
Only

Video
Only
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Noon-Early Afternoon Results

Registered B =—

Image

11:52:52 13:52:29
Frame # 8646 Frame # 9350

Detected Detected




Cuz
F/ ‘\QQ
\&

f@i‘

B

earch

I+ Performance Evaluation — ROC curves

Pd

Syaiems
Early Morning

1.00
0.95
0.90 - - - -Video

IR
0.85 Fused

Video (No Leaming)
0.80 - — |R (N0 Learning)
0.75 -
DTD | | | | |

0.0 0.2 0.4 0.6 08 1.0

Pf
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Experimental Results - ROC curves

ysiems
Early Morning Noon

100 — — _ _
=i 0304 - [T Video
L (& ) T = = = =Yiden

0.30 1 ——Fused 0.7 1 __-—‘* IR

- Fused
070 I 0.6 T T T T ]
L | | | ' ! 00 02 04 06 08 1.0
0.0 0.2 04 0.6 0.8 1.0 Pf
Pf
Afternoon
1.00 - S —
096 - R Pd = Probability of detection
' . - - = = Video Pf = Probability of false alarm
g 092 4]t R
|I — s
0.88 1t
0.84 . . . . .
0.0 0.2 0.4 0.6 0.8 1.0

Pf 51
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= A novel sensor Fusion is introduced.
» Learning is achieved through an evolutionary model.

» Statistics and phenomenology of the sensors in the
visible and longwave IR are integrated through an
evolutionary computational model.

* Fusion model adapts to various illumination conditions
and is suitable for detection under variety of
environmental conditions.

= Full diurnal (24 hour) cycle result is presented.

52
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