

Your MP3 Player and OFDM Modulator: About D-to-A Conversion

Joon Ho Cho and Byung Wook Han

Communication and Information Systems Laboratory Department of Electronic and Electrical Engineering Pohang University of Science and Technology (POSTECH)

Overview

- D/A conversion
- Introduction to OFDM
- Review of non-IDFT-based signal model and its PSD
 - ✓ Non-IDFT-based signal model for OFDM system and PSD
 - ✓ OFDM signal model in IEEE 801.11.a
 - ✓ OFDM signal model in IEEE 801.16.e and WiBro
- IDFT-based signal model and its PSD
 - ✓ IDFT-based discrete-time signal model
 - ✓ IDFT-based continuous-time signal model
 - ✓ New insight of PSD for OFDM subcarriers

Conclusions

Audible ranges of acoustic signals

- Human: 20Hz ~ 20 kHz (85 Hz ~ 1100 Hz)
- Dog: 15 Hz ~ 50 kHz (452 Hz ~ 1080 Hz)
- Frog: 50 Hz ~ 10 kHz (50 Hz ~ 8 kHz)
- Cat: 60 Hz ~ 65 kHz (760 Hz ~ 1520 Hz)
- Grasshopper: 100 Hz ~ 15 kHz (7 kHz ~ 100 kHz)
- Dolphin: 150 Hz ~ 150 kHz
- Bat: 1 kHz ~ 120 kHz

About what you are familiar with

- .WAV: uncompressed, various sampling rates
- CD: uncompressed, error-control coded, 44.1 kHz sampling rate, 20 kHz signal, 2 channels
- .mp3: compressed (psychoacoustic compression), CD quality to FM radio quality

Psychoacoustic Compression for MP3

- Thresholding sounds below the hearing range
- Frequency masking
- Temporal masking
- Elimination of low frequency stereo information

What kind of processing do we need to convert the stored digital signal to a continuous electrical signal that drives the speaker?

D/A conversion

Interpolation understood in time domain

Converted continuous time signal
$$y(t)$$
 is given by

$$y(t) = \sum_{n=-\infty}^{\infty} x[n]p(t-nT)$$
 $1/T$: conversion rate
 $p(t)$: interpolation function

Interpolation understood in time domain (cont.)

[Example 1] Rectangular interpolation func.

[Example 2] Triangular interpolation func.

In general, a practical interpolation function may be more complex than the above examples. By Nyquist theorem, sinc pulse makes the perfect reconstruction of the original signal. D/A Conversion - 6 / 54

Interpolation understood in frequency domain

Q. When $y(t) = \sum_{n=\infty}^{\infty} x[n]p(t-nT)$, find $Y_c(f)$ in terms of $X_c(f)$, T, and P(f).

A.
$$Y_c(f) = P(f)X_d(fT)$$

(Sol)
$$Y_{c}(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$$
$$= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[n]p(t-nT)e^{-j2\pi ft} dt$$
$$= \sum_{n=-\infty}^{\infty} x[n] \int_{-\infty}^{\infty} p(t-nT)e^{-j2\pi ft} dt$$
$$= \sum_{n=-\infty}^{\infty} x[n]P(f)e^{-j2\pi fnT}$$
$$= P(f) \sum_{n=-\infty}^{\infty} x[n]e^{-j2\pi fnT}$$

 $= P(f)X_d(fT)$

Interpolation understood in frequency domain (cont.)

Center for Broadband OFDM Mobile Acce

D/A Conversion - 8 / 54

Center for Reparkand OFDM Mobile Access

Interpolation understood in frequency domain (cont.)

D/A Conversion - 9 / 54

Interpolation understood in frequency domain (cont.)

(1) Audio file extracted from a movie

Sampling rate : 4kHz / Mono / 8bit

Good interpolation

Bad interpolation

"Your Honor, every one of these letters is addressed to Santa Claus. The Post Office has delivered them. Therefore the Post Office Department, a branch of the Federal Government, recognizes this man Kris Kringle to be the one and only Santa Claus." - [John Payne from Miracle On 34th Street (1947)] (2) Sinusoid freq is swept as a ramp function

Sampling rate : 4kHz / Mono / 8bit

Good interpolation

Bad interpolation

D/A converter with pre-distortion

- **Q.** Suppose that we want to generate $y(t) = \sum_{n=-\infty}^{\infty} x[n]p(t-nT)$. However, if we only have an interpolator with 1/T and g(t), what can we do?
- **A.** We filter x[n] to $\tilde{x}[n]$ such a way that $\tilde{X}_d(fT)Q(f) = P(f)X_d(fT)$.

 \iff We need to design a discrete time filter h[n] such that

$$x[n] \longrightarrow h[n] \longrightarrow \widetilde{x}[n]$$
with $\widetilde{X}_d(fT) = X_d(fT)H(fT) = X_d(fT)\frac{P(f)}{Q(f)}$

However, $\frac{P(f)}{Q(f)}$ may not be easy to design.

→ Usually a DAC upsamples the input discrete time signal and processes it.

Upsampling

Q. Let y[n] = x[n/N] for *n*=integer multiple of *N*, and 0, otherwise Find $Y_d(f)$ in terms of $Y_d(f)$ and *N*.

A.

$$Y_{d}(f) = X_{d}(fN)$$
(Sol) $Y_{d}(f) = \sum_{n=-\infty}^{\infty} y[n]e^{-j2\pi fn}$

$$= \sum_{m=-\infty}^{\infty} x[m]e^{-j2\pi fNm}$$

$$= X_{d}(fN)$$

Upsampling (cont.)

Examples for Upsampling

We want to generate a continuous-time signal x(t) having

Assume : A discrete-time system that generates a discrete-time signal y[n] is given.

Examples for Upsampling (cont.)

Q1. Sketch the output frequency response of $x_1(t)$

A. $X_1(f) = H_1(f)Y_1(f)$ = $H_1(f)P_1(f)Y_d(\frac{f}{2B})$

Examples for Upsampling (cont.)

Q2. Sketch the output frequency response of $x_2(t)$

A. $X_2(f) = H_2(f)Y_{2,c}(f) = H_2(f)P_2(f)Y_{2,d}(f/6B)$

 $=H_2(f)P_2(f)Y_d(3f/6B)$

 $=H_1(f)P_2(f)Y_d(f/2B)$

 $=X_1(f), |f| < B$

D/A Conversion - 17 / 54

Examples for Upsampling (cont.)

Q3. Sketch the output frequency response of $x_3(t)$

 $=H_2(f)P_2(f)G(f/6B)Y_d(f/2B)$

Digital IF upconversion

We want to generate a real-values bandpass signal $x(t) = Re\{\sum_{n=-\infty}^{\infty} d[m]p(t-mT)e^{j2\pi f_c t}\}$

A1. Continuous-time Direct upconversion using D/A and I-Q modulation

- → Phase noise, mismatch b/w I- and Q-branch
- A2. Continuous-time IF upconversion
 - → Still, trouble with the imperfect balance b/w I- and Q-branch
- A3. Digital IF upconversion
 - → Very high-rate DACs are now available.

Examples : Digital IF upconversion

We want to generate a continuous-time IF signal with bandwidth 1*MHz* by using a D/A with conversion-rate 200*MHz* and maximum output BW 100*MHz*.

Q1. Design a digital system whose output is fed to the DAC

A. We need to design a digital system that generate a sampled version of x(t) at rate 200MHz

Q2. Compared to the BW 1MHz of the signal, is 200MHz sampling rate too high?

Yes : sampled more than 100 times per symbol interval -> not necessary

- Examples : Digital IF upconversion (cont.)
- Q3. How can we reduce the complexity?
- A. By upsampling and filtering followed by upsampling and filtering...

Assumption : IF converter that use 4X and 5X upsamplers and HPFs

(1) Generate the sampled version of $Re\{x_l(t)e^{j2\pi(7.5MHz)t}\}$ at rate 10*MHz*.

Introduction to OFDM

Characteristics of OFDM (Orthogonal Frequency division multiplexing)

- Parallel data transmission with very long symbol duration
 - Robust under multi-path channels
- Transformation of a frequency-selective channel into *N* frequency-flat channels
- Cyclic prefix (CP) is used to efficiently eliminate inter-symbol interference (ISI).
- High spectral efficiency of the orthogonal subcarriers
- Efficient implementation of the transmitter-receiver pair using Inverse Fast Fourier transform (IFFT) and Fast Fourier transform (FFT)
- High peak-to-average power ratio (PAPR) and sensitivity to carrier frequency offset (CFO)

Introduction to OFDM (cont.)

General system structure of OFDM transmitter

D/A Conversion - 27 / 54

Non-IDFT-based signal model for OFDM system

 Common continuous-time signal model in many literatures for a single OFDM symbol in complex baseband would be

$$Y(t) = \sum_{k=1}^{K} X_k e^{j2\pi f_k t}, \quad 0 \le t < T_0$$

where X_k is the data symbol transmitted by the *k*th subcarrier whose carrier frequency is f_k .

• The length of a single OFDM symbol and the subcarrier frequencies are related as

$$f_k - f_{k'} = \frac{k - k'}{T_0}$$

which leads to the orthogonality of the signals $e^{j2\pi f_k t}$ for k=1,2,...,K in the observation interval with time duration T_0 .

• For simplicity, assume that X_k 's are uncorrelated, proper complex, zero-mean random variables with unit variance.

Non-IDFT-based signal model for OFDM system (cont.)

 For the transmission of more than one OFDM symbol, the signal model is modified to

$$\hat{Y}(t) = \sum_{k=1}^{K} \left(\sum_{m=-\infty}^{\infty} X_k[m] w_C(t - mT_b) \right) e^{j 2\pi f_k t}$$

which $X_k[m]$ is the *k*th subcarrier data symbol for time-index *m*, $1/T_b$ is the OFDM block transmission rate and $w_c(t)$ is the windowing function.

• T_b is the OFDM block transmission time and selected as larger than or equal to

 $T_0 + \tau_{\rm max}$ where $\tau_{\rm max}$ is the maximum delay spread of the channel.

• The shape of the roll-off of the windowing function $w_C(t)$ is usually designed to reduce the inter-carrier interference (ICI) under carrier frequency offset (CFO).

→ If no CFO, not only IBI but also ICI can be completely removed.

Example of non-IDFT based continuous-time signal structure with windowing

Power spectral density (PSD) of non-IDFT-based signal model

• The PSD of this signal model is given by

$$S_{\hat{Y}\hat{Y}}(f) = \frac{1}{T_b} \sum_{k=1}^{K} |W_C(f - f_k)|^2$$

where $W_C(f)$ is the continuous-time Fourier transform (CTFT) of the windowing function $w_C(t)$.

• Note that $X_k[m]$'s are uncorrelated, proper complex, zero-mean random variables with unit variance.

• If a wideband analog filter is additionally used, if some subcarriers are null-out, and if different transmit power is allocated for each subcarrier, signal model can be rewritten to a more general form shown in the next page.

Power spectral density (PSD) of non-IDFT-based signal model (cont.)

General form of non-IDFT-based signal model

$$Z(t) = p(t) * \left[\sum_{k=1}^{K} \left(\sum_{m=-\infty}^{\infty} \alpha_k X_k[m] w_C(t - mT_b) \right) e^{j2\pi f_k t} \right]$$

- p(t) is the complex envelope of the bandpass transmit filter.

- $_k$ is the complex weighting factor for the *k*th subcarrier.

($_k$ is zero. \rightarrow The *k*th subcarrier is called a *null subcarrier*.)

- $X_k[m]$ is the *k*th subcarrier data symbol for time-index *m*.
- $w_C(t)$ is the continuous-time windowing function.
- $1/T_{h}$ is the OFDM block transmission rate.
- The PSD of this signal model is given by

$$S_{ZZ}(f) = \frac{|P(f)|^2}{T_b} \sum_{k=1}^{K} |\alpha_k|^2 |W_C(f - f_k)|^2.$$

Power spectral density (PSD) of non-IDFT-based signal model (cont.)

- $\alpha_k = 1, \forall k$ K = 32
- Rectangular windowing

(a) :
$$T_b = T_0$$

(b) :
$$T_b = 1.25T_0$$

Window duration = T_b

• (a) : Fourier transform of the rectangular window function is a sinc function.

 \rightarrow PSD is almost flat except at the edges.

(At the edge, the PSD decays approximately at the rate $1/f^2$.)

- (b) : $\sum_{k=1}^{\infty} |W_C(f-f_k)|^2$ is a periodic function with period $1/T_0$.
 - \rightarrow PSD is not flat in the mid-bands.

D/A Conversion -33 / 54

OFDM signal model in IEEE 801.11.a

• Baseband signal frame : $r_{PACKET}(t) = r_{PREAMBLE}(t) + r_{SIGNAL}(t - t_{SIGNAL}) + r_{DATA}(t - t_{DATA})$

 $-t_{SIGNAI} = 16 \mu s$, $t_{Data} = 20 \mu s$

- Subframe : $r_{SUBFRAME}(t) = w_{T,SUBFRAME}(t) \sum_{k=1}^{N_{ST}/2} C_k e^{j2\pi k\Delta_f (t T_{GUARD})}$
 - $w_{T, SUBFRAME}(t)$: Continuous-time windowing function with duration t_{TR}
 - C_k : Data, pilots, or training symbols
 - $\Delta_f = 1/T_{FFT}$: Subcarrier frequency spacing (=1/ T_0 in our models)
 - T_{GUARD} : Guard time to create the cyclic prefix

 \rightarrow For the short training seq. (=0 μ s), long training seq. (= T_{GD}), data OFDM symbols $(=T_{GI})$

 Windowing function may have the time duration extended over than one OFDM period, T_{FFT} , and the transition time overlapped via an adjacent OFDM symbol windowing. (Also in our signal model)

OFDM signal model in IEEE 801.11.a (cont.)

• Timing-related parameter

Parameter	Value
N_{SD} : Number of data subcarriers	48
N_{SP} : Number of pilots subcarriers	4
N_{ST} : Number of total subcarriers	52 $(N_{SD} + N_{SP})$
Δ_f : Subcarrier frequency spacing	0.3125 MHz (=20 MHz/64)
T _{FFT} : IFFT/FFT period	3.2 $\mu s (1/\Delta_f)$
<i>T_{PREAMBLE}</i> : PLCP Preamble duration	16 $\mu s (T_{SHORT} + T_{LONG})$
T_{SIGNAL} : Duration of the SIGNAL BPSK-OFDM symbol	4.0 $\mu s (T_{GI} + T_{FFT})$
T_{GI} : GI duration	0.8 $\mu s (T_{FFT}/4)$
T_{GI2} : Training symbol GI duration	1.6 $\mu s (T_{FFT}/2)$
T_{SYM} : Symbol interval	$4 \mu s (T_{GI} + T_{FFT})$
T_{SHORT} : Short training sequence duration	8 $\mu s (10 T_{FFT}/4)$
T_{LONG} : Long training sequence duraion	$8 \mu s (T_{GI2} + 2T_{FFT})$

OFDM signal model in IEEE 801.16.e and WiBro

OFDM transmit signal

$$s(t) = \operatorname{Re}\left\{\sum_{\substack{k=-N_{ST}/2\\k\neq 0}}^{N_{ST}/2} C_{k} e^{j2\pi k \Delta_{f}(t-t_{g})}\right\}, 0 \le t \le T_{s}$$

- C_k : Complex number of data symbol (QAM)

 $-\Delta_f = F_s / N_{FFT}$: Subcarrier frequency spacing

- N_{FFT} : Smallest power by 2 greater than number of used subcarriers
- F_s : Smallest power by 2 greater than number of used subcarriers
- T_g : Guard time to create the cyclic prefix

IDFT-Based Signal Model and its PSD

1. IDFT-based discrete-time signal model

- Problem of the non-IDFT signal model : Its straightforward implementation requires $|\kappa|$ local oscillators that are tuned to $|\kappa|$ different subcarrier frequencies where $\kappa = \{k : \alpha_k \neq 0\}$, i.e., $|\kappa|$ is the number of non-null subcarriers.
 - → Idea : Using the *K* times sampling of the signal $e^{j2\pi f_k t}$ in the interval

 $0 \le t < T_0$ at the rate K/T_0 for k=1,2,...,K

 \rightarrow Orthogonal vectors that are proportional to the column vectors of the *K*-point IDFT matrix

The most common discrete-time signal model for a single vector of OFDM symbols

is

$$\underline{Y} = S\underline{X}$$

where *S* is the *K*-point IDFT matrix whose (k, l)th entry is given by $s_k[l] = \frac{1}{\sqrt{K}} e^{j\frac{2\pi k}{K}}$, <u>*X*</u> is the vector consisting of *K* data symbols $\{X_k\}_{k=1}^K$ and <u>*Y*</u> is the vector of OFDM symbol.

1. IDFT-based discrete-time signal model (cont.)

• This procedure can be rewritten as

- Operation characteristics
 - The data symbols $\{X_k\}_{k=1}^K$ are orthogonally multiplexed.

- The energy of different data symbol is centered at different subcarrier frequencies.

1. IDFT-based discrete-time signal model (cont.)

• For a transmission over a continuous-time channel, the OFDM symbol is D/Aconverted then up-converted using a local oscillator whose frequency is tuned to the center frequency of the transmitted bandpass signal.

➔ performed efficiently without multiple local oscillators

• In many case, IDFT multiplication can be implemented by a computationally efficient inverse Fast Fourier Transform (IFFT) instead of IDFT, then multiplication requires only $O(N\log N)$ operations reduced from $O(N^2)$

• Not for a single OFDM symbol but for a sequence of OFDM symbols, what is the signal model considering all of analog wideband filter, D/A converter, digital interpolation filter, cyclic prefix (or postfix), windowing sequence?

→ Needs some modifications to IDFT-based continuous-time signal model

2. IDFT-based continuous-time signal model

• Revised system structure for IDFT-based transmitter block diagram for OFDM

- IDFT matrix point : K
- Length of cyclic prefix : ${\cal L} + {\cal M}$, cyclic postfix : ${\cal M}$

- ($L \ge$ channel length, M : # of overlapped entries of the vectors after P/S)
- Length of windowing sequence : K+L+2M

2. IDFT-based continuous-time signal model (cont.)

• *D/A converter* : would be functions such as the sample-and-hold

- If the D/A input is clocked in every T_c [sec], then D/A converter can be viewed as a linear modulator employing a rectangular pulse with duration T_c .

→ The D/A converter combined with the analog filter can be viewed as a linear modulator employing a pulse, say p(t) with the pulse transmission rate $1/T_c$ (also when D/A uses a digital interpolation that operates oversampling).

• *Windowing sequence* : Usually designed to properly weight the first *M* and the last *M* symbols,

→ The proper shape of the roll-off of the windowing sequence reduces the inter-channel interference (ICI).

• *Null subcarriers* : Not to use an analog filter with a sharp transition from passband to stopband, some carriers whose the index k 's are around $k \approx K/2$ being nulled out.

- The useful subcarriers will be less than *K*, but still *K*-point IDFT is performed with data symbols.

✤ 2. IDFT-based continuous-time signal model (cont.)

• General form of the complex baseband equivalent for IDFT-based continuoustime signal model is,

$$Z(t) = \sum_{k=1}^{K} \sum_{m=-\infty}^{\infty} \alpha_k X_k[m] s_k(t - mT_b).$$

- α_k is the subcarrier weighting factor.
- $X_k[m]$ is the *m*th symbol for the *k*th subcarrier.
- T_b is the OFDM symol block period given by $T_b = (K + L + M)T_c$.
- T_c is the transmit pulse time duration.

(OFDM subcarrier spacing is $1/T_0$ [Hz] , so $KT_c=T_0$)

- $s_k(t)$ is the *k*th subcarrier waveform.

2. IDFT-based continuous-time signal model (cont.)

• $s_k(t)$ is defined by considering the windowing sequence $w_D[l]$, IDFT matrix element $s_k[l]$, and transmit pulse p(t). So, $s_k(t)$ is given by

$$s_k(t) = \sum_{l=1}^{K+L+2M} \alpha_k[l] p(t-lT_c)$$

where $\alpha_k[l] = w_D[l]s_k[l]$ for k = 1, 2, 3, ..., K, and l = 1, 2, 3, ..., K + L + 2M. $(s_k[l] \text{ is from IDFT matrix } (k, l) \text{ th element and is defined as } s_k[l] = \frac{1}{\sqrt{K}}e^{j\frac{2\pi kl}{K}}$, but now up to l = K + L + 2M)

• p(t) is the equivalent transmit pulse including all the effects of the D/A converter, digital interpolation filter, and analog wideband filter.

• This modified signal model looks similar to a symbol synchronous DS-CDMA signal model where $s_k(t)$ serves as the signature waveform and $a_k[l]$ serves as the signature sequence, both the *k*th users.

Power spectral density (PSD) of IDFT-based continuous signal model

• Fourier transform of the kth subcarrier waveform $s_k(t)$

$$S_{k}(f) = \frac{1}{\sqrt{K}} P(f) \sum_{k=1}^{K+L+2M} w_{D}[l] \exp\left(-j2\pi \left(f - \frac{k}{T_{0}}\right)\right) = \frac{1}{\sqrt{K}} P(f) W_{D}\left(f - \frac{k}{T_{0}}\right)$$

• Using above result, PSD of this signal model is obtained as

$$S_{ZZ}(f) = \frac{|P(f)|^2}{(K+L+M)T_0} \sum_{k=1}^{K} |\alpha_k|^2 \left| W_D(f - \frac{k}{T_0}) \right|^2$$

where $W_D(f)$ is the discrete-time Fourier transform of the windowing sequence $\{w_D[l]\}_{l=1}^{K+L+2M}$ defined as $W_D(f) = \sum_{l=1}^{K+L+2M} w_D[l]e^{-j2\pi jT_c l}$.

Power spectral density (PSD) of IDFT-based continuous signal model (cont.)

Non-IDFT-based :
$$S_{ZZ}(f) = \frac{|P(f)|^2}{T_b} \sum_{k=1}^K |\alpha_k|^2 |W_C(f - f_k)|^2$$

IDFT-based : $S_{ZZ}(f) = \frac{|P(f)|^2}{(K + L + M)T_0} \sum_{k=1}^K |\alpha_k|^2 |W_D(f - \frac{k}{T_0})|^2$

• Significant difference from the non-IDFT-based model is that the Fourier transform of the windowing sequence $\{w_D[l]\}_{l=1}^{K+L+2M}$ is used instead of that of the continuous windowing function $w_c(t)$

- [Note] Two properties of $W_D(f)$
 - (1) $W_D(f)$ is periodic with a period $1/T_c$

(2) $W_D(f-k/T_0)$ is periodic in k with a period K under the assumption $KT_c = T_0$

Parameter

Rectangular windowing sequence for

(a) :
$$K = 10, L + M = 0$$

(b) :
$$K = 10, L + M = 2$$

• [Note]
$$|W_D(f)|^2 = \left|\frac{\sin(\pi f(K+L+2M)T_c)}{\sin(\pi fT_c)}\right|^2$$

• Increase in (K+L+2M) \rightarrow Decrease in the width of the main lobe and increase in the amount of in-band energy contained in the interval $-\frac{1}{2T_0} \le f \le \frac{1}{2T_0}$ • Periodic with period $1/T_c$

New insight into PSD of OFDM signals

Definition

If the aggregate transmit pulse p(t) has a positive excess bandwidth, then, due to the periodicity of $W_D(f)$, a logical subcarrier can have the signal energy concentrated at $f = \frac{k + lK}{T_0}$ for some integers *l*, that is, a logical subcarrier can have more than one physical subcarriers.

→ *Nominal subcarrier* : Physical subcarrier with the greatest energy, and

Ghost subcarriers : Other physical subcarriers except the *nominal subcarrier*

• For some OFDM logical subcarriers, we may observe two physical subcarriers, the nominal subcarriers and ghost carrier, using IDFT-based continuous signal model.

Example : Energy spectral density of the subcarrier waveforms

• p(t) is the SRRC pulse with =0.5, K=8, L=0, M=0, no null subcarrier

• The subcarriers with indexes k=3,4, and 5 have the significant portion of the energy split into two physical subcarriers located $1/T_c$ [Hz] apart.

Example : Virtual roll-off effect by using proper null-subcarrier

- Very fast roll-off in the PSD may be needed, but designing such a filter is costly.
 - Because we need a high-rate D/A converter, high order wideband transmit filter
- Efficient solution : By nulling subcarriers with indexes $k \approx K/2$

- PSD $S_{ZZ}(f)$ of complex baseband signal Z(t)
- Parameter
 - *K*=128, *L*=0, *M*=0, 29 null-subcarriers
 - Sample-and-hold in D/A converter
- (a) : No wideband analog filtering
- (b) : Use of an analog filter to make p(t) the SRRC pulse with =0.2
- Possible to make a transition band very small

In WiBro standard, the signal model is given by

$$s(t) = \operatorname{Re}\left\{\sum_{\substack{k=-N_{ST}/2\\k\neq 0}}^{N_{ST}/2} C_{k} e^{j2\pi k\Delta_{f}(t-t_{g})}\right\}, 0 \le t \le T_{s}$$

- A rectangular windowing function without any window overlapping is used.
- Non-IDFT-based signal model is used.

✤ To use IFFT in the transmitter, we need the following or an equivalent :

- A rectangular windowing sequence without any window overlapping
- A sample-and-hold D/A converter with inverse-sinc shaped transmit filter in the frequency band for non-null subcarriers

$$\left| W_D(f) \right|^2 = \left| \frac{\sin(\pi f(K+L)T_c)}{\sin(\pi fT_c)} \right|^2$$
$$\approx \left| \frac{\sin(\pi f(K+L)T_c)}{\pi fT_c} \right|^2$$

for *large* K+L and for $f \approx 0$

- The transmit filter must invert the sinc square envelope to equally distribute the power among non-null subcarriers.
- The transition from the passband to stopband must lie over the null-subcarrier frequency band.

Conclusions

D/A conversion is a necessary procedure in modern digital audio systems and in digital communication systems.

$$Y_c(f) = P(f)X_d(fT)$$

Upsampling combined with interpolation is often used in commercial DACs and in modern radio transceiver.

 $Y_d(f) = X_d(fN)$

✤ IFFT-based OFDM signaling also requires D/A conversion.

$$S_{ZZ}(f) = \frac{|P(f)|^2}{(K+L+M)T_0} \sum_{k=1}^{K} |\alpha_k|^2 \left| W_D(f - \frac{k}{T_0}) \right|^2$$

• To ease the burden of designing a good interpolation filter, null subcarriers are used.

• The interpolation filter must have the transition from passband to stopband in the null subcarriers' frequency band.

