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Efficient exciton generation in 
atomic passivated CdSe/ZnS 
quantum dots light-emitting 
devices
Byoung-Ho Kang1,*, Jae-Sung Lee2,*, Sang-Won Lee2, Sae-Wan Kim2, Jun-Woo Lee2,  
Sai-Anand Gopalan2, Ji-Sub Park2, Dae-Hyuk Kwon3, Jin-Hyuk Bae2, Hak-Rin Kim2 &  
Shin-Won Kang2

We demonstrate the first-ever surface modification of green CdSe/ZnS quantum dots (QDs) using 
bromide anions (Br-) in cetyl trimethylammonium bromide (CTAB). The Br- ions reduced the interparticle 
spacing between the QDs and induced an effective charge balance in QD light-emitting devices (QLEDs). 
The fabricated QLEDs exhibited efficient charge injection because of the reduced emission quenching 
effect and their enhanced thin film morphology. As a result, they exhibited a maximum luminance of 
71,000 cd/m2 and an external current efficiency of 6.4 cd/A, both significantly better than those of their 
counterparts with oleic acid surface ligands. In addition, the lifetime of the Br- treated QD based QLEDs 
is significantly improved due to ionic passivation at the QDs surface.

Quantum dot light-emitting device (QLED) has received significant attention as a potential component of 
next-generation displays that may replace liquid crystal display (LCD) and organic light-emitting diode (OLED) 
systems. The advantages of quantum dots (QDs) in electroluminescence (EL) devices include the possibility of 
tuning the emission color by changing the QD size and enhanced color purity with a full-width at half-maximum 
(FWHM) peak, as narrow as 18 to 30 nm in the visible range1. In addition, solvent processing can be simplified 
via spin-casting or contact printing, either of which allow the QLED to meet a broad range of standards set by the 
National Television System Committee (NTSC)2,3.

Existing QLEDs are built using the traditional architecture of an OLED, where a solvent process is combined 
with a vacuum process, and are often comprised of materials such as organic monomers or metal oxides. Sun  
et al. reported on a QLED with a hybrid structure that incorporates Alq3 as its electron transport layer (ETL) and 
showed that the optimized ETL, formed via thermal evaporation, resulted in high QLED performance4. There 
have been several proposals regarding the composition of QLEDs, such as the use of nickel oxide (NiO) and zinc 
oxide (ZnO):tin oxide (SnO2) thin films for the metal-oxide charge transport layer and the use of molybdenum 
oxide (MoO) in an inverted structure5,6. These studies investigated the energy transfer phenomenon in the EL 
recombination zone within the QDs and resulted in QLEDs with good performance. However, they employed 
vacuum evaporation for deposition of the ETL and the hole transport layer (HTL). Recently, metal-oxide nan-
oparticles (NPs) with high electron mobilities have been used in ETLs in order to enhance device performance 
without using a vacuum process. Kim et al., Qasim et al., Qian et al., and Madners et al. reported on QLEDs 
manufactured using alcohol dispersed metal-oxide NPs, such as titanium oxide (TiO2) and ZnO NPs, as the 
ETL, and confirmed the possibility of using solution processing to fabricate the ETL7–10. These studies indicated 
high-efficient device performance and showed well defined energy transfer between the metal-oxide NPs and 
the cathode. Various investigations of the QLED structure and charge transport materials have been reported. As 
mentioned, QDs may be used in the emissive layer (EML). In this context, it is important to use surface interfacial 

1Center for Functional Devices Fusion Platform, Kyungpook National University, Sankyuk-dong, Bukgu, 702-701 
Daegu, Republic of Korea. 2School of Electronics Engineering, College of IT Engineering, Kyungpook National 
University, Sankyuk-dong, Bukgu, 702-701 Daegu, Republic of Korea. 3Department of Electronic Engineering, 
Kyungil University, Buho-ri, Hayang-eup, 712-701 Gyeongsan-si, Republic of Korea. *These authors contributed 
equally to this work. Correspondence and requests for materials should be addressed to S.-W.K. (email: swkang@
knu.ac.kr)

received: 07 June 2016

accepted: 13 September 2016

Published: 30 September 2016

OPEN

mailto:swkang@knu.ac.kr
mailto:swkang@knu.ac.kr


www.nature.com/scientificreports/

2Scientific Reports | 6:34659 | DOI: 10.1038/srep34659

control to produce QLEDs with very high performance. In an effort to improve exciton-involved radiative recom-
bination in QLEDs, Shen et al. and Lim et al. reported QLEDs prepared by controlling the shell thickness of core/
shell heterostructured QDs. The luminance and luminescence efficiency of the optimized QLEDs improved sig-
nificantly11,12. In addition, in order to enhance the efficiency of QDs, several researchers have focused on surface 
modulation using various organic ligands13–15. For instance, Shen et al. reported synthesizing high-efficiency 
blue-violet QLEDs by using shorter 1-octanethiol ligands on QDs. This report shows improvements in the over-
all charge balance of the QLEDs and increased luminance efficiency16. Nevertheless, these studies implemented 
long-chain modifications, which can reduce the efficiency of charge transport from neighboring layers. In order 
to improve the charge transport, some reports suggested a new strategy that inorganic halogen ions are role of 
short-chain ligand on QDs17–19. Therefore, inspection of QLEDs, reducing the interparticle spacing (IPS) of CdSe/
ZnS QDs with short-chain ligands is necessary to enhance the exciton generation rate in solid-state CdSe/ZnS 
QDs emissive layer.

In the present study, we demonstrate the effects of using bromide anions (Br-) as short inorganic halogen 
ligands on green CdSe/ZnS QDs via cetyl trimethylammonium bromide (CTAB) treatment, and coordination 
of the Br- on the CdSe/ZnS QDs film via nucleophilic substitution20. This study constitutes the first-ever report 
on the effects of CTAB treatment on the interface between QDs and a neighboring layer. In this study, the Br- in 
CTAB led to reduction of the QD IPS and an increase in charge transport from neighboring layers. To evaluate 
the performance of QLEDs with Br-, we fabricated solution-processible QLEDs using modified versions of exist-
ing fabrication methods21–23. The resulting Br--capped QLED exhibited significantly higher performance than its 
counterpart consisting of OA organic long-chain ligands. To the best of our knowledge, our modification of the 
QD surface ligand results in the largest reported improvement in QLED performance of surface modified QDs 
over that of organic ligand capped QDs.

Results
QD surface modulation via CTAB treatment.  The exchange of ligands from OA to Br- was performed by 
treating the CdSe/ZnS QDs solid-state film with a 20 mg/ml CTAB solution after vacuum thermal annealing. In 
this procedure, the ammonium cation was combined with the deprotonated OA via nucleophilic substitution, and 
was subsequently removed by rinsing with an alcohol solution, as shown Fig. 1. The schematic and band diagram 
of the QLEDs and the Br- containing EML are shown in Fig. 2.

Generally, OA-capped CdSe/ZnS QDs have chains of approximately 1.7 nm in length, with 18 carbon bonding. 
This long-chain ligand increases the number of charge-trapping sites and reduces the EML film packing density 
because of the large QD IPS. However, in the proposed surface modification, the inorganic Br- anions were coor-
dinated to the Zn2+-rich QD surface and the ammonium-OA complex was rinsed with ethanol. Consequently, 
the QD surface has only Br- anions bound to it, and the organic ligands have been removed. As mentioned before, 
reducing the IPS is essential to formation of a close-packed EML and to effective confinement of charges from 
adjacent layer in the QD EML. If the IPS is reduced via surface ligand exchange, the packing density of the QD 
EML can increase. This correlation between IPS and packing density can be derived from Kuwabara’s cell model, 
which is used to calculate the IPS in a particulate system24. The IPS of a particulate system is the distribution of 
distances between QDs contained within a given volume and is expressed by the following equation (1).

= −IPS d r2( ) (1)

where r is the radius of the CdSe/ZnS QDs and d is the radius of the CdSe/ZnS QDs with surface ligands, as 
shown in Fig. 2a. In this case, we confirmed that the Br-capped QDs exhibited close center-to-center pitch than 
the OA-capped QDs because of the reduced IPS. Thus, Br- ligand exchange can increase the close-packed film 
state. In addition, as shown in Fig. 2b, short chain QD ligands can also enhance the exciton energy-transfer rate 
from an adjacent charge transport layer to QD layer25. This exciton energy-transfer rate (EETR) can be expressed 
using the following equation (2).
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Figure 1.  Schematic diagram of the surface modulation from OA to Br- by CTAB treatment. 
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where a is the QD radius, RF is the Föster radius, D is the distance from a donor to a plane of QD acceptors, and τ 
is the donor PL relaxation time. In equation (2), the EETR is dependent on the QD radius and distance between 
the adjacent layer and the QD EML. Thus, the EML film’s packing density and efficiency of charge confinement 
increase because Br- is smaller than the OA, as summarized in Table 1.

Optical properties of QDs.  In order to verify coordination of the Br- anions to the CdSe/ZnS QD surfaces, 
we analyzed the materials’ Fourier transform infrared (FT-IR) spectra. As shown in Fig. 3a, the OA-capped CdSe/
ZnS QDs have peaks at wavenumbers (1/λ​) of approximately 2,921 cm−1 and 2,852 cm−1 from of C-H bonding, 
1,548 cm−1, and 1,458 cm−1 from COO- bonding, and 890 cm−1 from C=​C bonding. However, no organic peaks 
are observed for the Br-capped CdSe/ZnS QDs. The proportion of Br- in the Br-capped CdSe/ZnS QDs is calcu-
lated using energy dispersive spectroscopy (Supplementary information Fig. S1). These results confirm that the 

Figure 2.  Schematic diagram of QLEDs structure. (a) Detailed QLED structure and QDs interparticle spacing 
in EML (scale bar: 5 nm). (b) Energy band diagram.
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Br- is well modulated on the QD surface via electrostatic interaction. Subsequently, the QD packing density was 
determined; this measurement is essential because non-uniformity in a solid state film can induce device perfor-
mance degradation. To verify its packing density, atomic force microscopy (AFM) was used to measure the film’s 
surface roughness. The Br-capped QD film had a more homogeneous morphology than the OA-capped QD film 
because of its smaller IPS (Supplementary information Fig. S2). Figure 3b shows the absorption and photolumi-
nescence (PL) spectra of the OA and Br-capped CdSe/ZnS QD films. Both absorption spectra are similar, but 
the PL spectrum of the Br-capped CdSe/ZnS QDs is slightly red shifted by approximately 5 nm, and has a higher 
FWHM, than the OA-capped CdSe/ZnS QDs. This effect may stem from three possible causes26–28: (i) stronger 
electronic coupling among the neighboring QDs via extension of the electron wave function outside the QDs; (ii) 
charge transfer between the QDs and the surface ligands which delocalizes the electron wave function within the 
QDs and relaxes the quantum confinement effect; and (iii) increase in the red shift as the IPS decreases, which 
indicates delocalization of the excitonic wave function and the formation of extended states. Thus, we think that 
stronger electron coupling, effective charge transfer, and decreasing IPS are the main factors contributing to the 
red shift observed in the emission from the CTAB treated QD film.

The relative photoluminescence quantum yield (PL QY) of the QDs was measured by comparing their PL 
intensities with those of a primary standard dye solution (Rhodamine 6G) at the same optical density (0.05), at 
the 450 nm excitation wavelength29. The Br-capped QDs exhibit a higher PL QY than the OA-capped QDs, as 
shown in Table 1 and Supplementary information Fig. S3. The high PL QY indicated the reduction of nonradia-
tive decay in high-quality Br-capped QDs. These results show that Br- anion treatment results in a more efficient 
thin film emissive layer than is achieved with OA-capped QDs.

Performance of QLEDs.  The effectiveness of the Br- modified QD film was confirmed by measuring the 
luminance, current density and external current efficiency-external quantum efficiency (EQE) alongside the 
current density in the QLEDs. In order to evaluate the efficiency of charge confinement of the Br- surface mod-
ification of the QDs, we fabricated two sets of QLEDs: the OA-capped QD based QLED (OA-QLED) and the 
Br-capped QDs based QLED (Br-QLED). Figure 4 shows the performance of the fabricated QLEDs with an 
applied voltage of 7 V. The EL intensities of the OA-QLED and the Br-QLED are approximately 540 nm, and no 
parasitic emission is observed from the adjacent layers. However, Br-capped CdSe/ZnS QDs show a wavelength 
shift of 4 nm and broadening FWHM due to decreased IPS, as mentioned earlier. Despite being driven by the 
same applied voltage, the EL intensity of the Br-QLED is much higher than that of the OA-QLED. This shows that 
Br-capped CdSe/ZnS QDs can enhance the EL intensity by having fewer trap sites than their organic counter-
parts. Therefore, Br-capped CdSe/ZnS QDs can induce balanced carrier injection, enhanced recombination, and 
reduced emission quenching. A maximum luminance of 57,000 cd/m2 and current efficiency of 5.1 cd/A at max-
imum luminance are obtained from the OA-QLED. However, the Br-QLED shows superior performance, with a 
maximum luminance of 71,000 cd/m2 and current efficiency of 6.4 cd/A at maximum luminance. Consequently, 
the Br-QLED exhibits approximately 25% better luminance and current efficiency than the OA-QLED. The 
Br-QLED has higher luminance than its counterpart at the same current density, as summarized in Table 1. 

Surface Ligand
Ligand length 

(nm)
PL peak 

(nm) PL QY (%)
Turn-on voltage 
@ 1 cd/m2 (Von)

Maximum 
luminance (cd/m2)

Current efficiency @ 
Max luminance (cd/A)

External quantum efficiency 
@ Max luminance (%)

OA-capped QDs 1.7 532 82 2.5 57,000 5.1 1.31

Br-capped QDs 0.1 537 85 3.0 71,000 6.4 1.65

Table 1.   Characteristics of QDs via interparticle spacing and its EL performance.

Figure 3.  The materials characterization of bromide anion modulation on CdSe/ZnS quantum dots.  
(a) FT-IR spectra of OA-capped CdSe/ZnS QDs and Br--capped CdSe/ZnS QDs. (b) The optical properties of 
CdSe/ZnS QDs by CTAB treatment.
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In addition, the current density-voltage (J-V) characteristics of the OA-QLED and Br-QLED are compared in 
Fig. 4c. The Br-QLED shows higher a space-charge limited current (SCLC) region at the threshold voltage (Vth) 
than the OA-QLED. These results demonstrate that the short-chain Br- ligands on the QD surface produce more 
efficient energy transfer than the long-chain organic OA ligand, without the presence of charge trapping sites 
in the EML. Therefore, the luminance conversion characteristics of the EML depend on the IPS and the charge 
trapping sites between adjacent QDs and neighboring layers.

In contrast, as shown in Fig. 4, in the low current density region, the Vth of the Br-QLED is slightly higher and 
the current efficiency-EQE with current density is lower than with the OA-QLED. Through surface modification, 
the QD IPSs decrease and their packing density increase, which increases the dielectric constant and capacitance 
of the QD layer30,31. At the same applied voltage, the net electric field applied to the QD layer is diminished, which 
augments the Vth of Br-QLED. When the applied voltage is higher than Vth, the luminance and efficiency are dra-
matically increased and stable because of the effective charge balance without nonradiative recombination in the 
EML. In order to investigate the effect of surface modification with specific organic chains, we tested trioctylphos-
phine (TOP) capped QDs and also used CTAB as a solid-state film. In this case, the luminance and efficiency of 
the QLED decreased due to low nucleophilic substitution reactivity (Supplementary information Fig. S4).

Lifetime characteristics of QLEDs.  Lifetime tests of the un-encapsulated QLEDs were performed by 
operating the device at a constant current of 4 mA, and are shown in Fig. 5. All lifetime tests were performed 
under ambient conditions. The lifetime T50 (measured in h), is the time required for the luminance to decrease 
to 50% of its initial value. The OA-QLED shows rapid deterioration from an initial luminance of 900 cd/m2 within 
33 h of continuous operation. In contrast, the brightness of the Br-QLED decays slowly to half of its initial value 
after 79 h. Its initial luminance is the same as that of the OA-QLED. It is obvious that the device with Br-capped 
QDs is more stable under continuous operation, and that its lifetime is almost 2.4 times longer than device made 
with the OA-capped QDs. The improvement in device stability is congruent with the efficient charge confinement 
in the EML.

CIE coordinates analysis.  To verify the emission color of the fabricated device, we evaluated the 
Commission Internationale de Eclairage (CIE) color space for the OA-QLED and the Br-QLED, as shown in 
Fig. 6. All of the QLEDs display saturated green color coordination, which resides outside the National Television 
System Committee (NTSC) color triangle. Despite the surface modification, these results show that the color pro-
duced is not affected by the difference between Br- anion and OA-capping on the surfaces of the CdSe/ZnS QDs. 
The inset shows photographs of OA-QLEDs and Br-QLEDs operating with an emission area of 9 mm2.

Figure 4.  Performance evaluation results for the fabricated QLEDs. (a) Normalized EL spectra. (b) Voltage-
luminance. (c) Voltage-current density (inset: enlarge scale of the 2.0–4.0 V). (d) Current efficiency-EQE 
alongside the current density.
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Discussion
In summary, we demonstrate the use of Br-capped CdSe/ZnS QDs to improve the overall performance of 
solution-processable QLEDs. Because of their lower charge trapping density, QLEDs with Br-capped QDs not 
only have enhanced thin film morphology, but also improved luminance and current efficiency compared to 
QLEDs with OA-capped QDs. Thus, Br-capped QDs provide efficient charge confinement in the EML due to 
reduced emission quenching, and significantly improved luminance and current efficiency.

Methods
Synthesis of gradient CdSe/ZnS quantum dots.  Green CdSe/ZnS QDs with chemical-composition 
gradients were prepared using a method reported in the literature9,32. For a typical synthesis, 0.1 mmol of cad-
mium oxide (CdO), 4 mmol of zinc acetate (Zn(CH3CO2)2) and 5 ml of oleic acid (OA) were placed in a 50 ml 
flask and heated to 150 °C in flowing high-purity Ar gas for 30 min. Then 15 ml of 1-octadecene (ODE) was added 

Figure 5.  Lifetime characteristics of OA-QLED and Br-QLED without encapsulation. Lifetime 
characteristics of the OA-QLED (black line) and Br-QLED (red line) at the initial luminance of 900 cd/m2, 
under constant current operation 4 mA at room temperature.

Figure 6.  CIE coordinates of the fabricated QLEDs. CIE coordinates of the OA-QLED (circle) and Br-QLED 
(star) with the NTSC colour triangle. Insets show photographs of EL emission from the QLEDs.
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to the 3-neck flask and the temperature increased to 300 °C. A stock solution containing 0.2 mmol of selenium 
(Se) and 3 mmol of sulfur (S) in 2 ml of trioctylphosphine (TOP) was quickly injected into the 3-neck flask. The 
reaction temperature was maintained for 10 min and then cooled to room temperature. Then, the synthesized 
QDs were purified by adding toluene, ethanol solution. The mixed solution was centrifuged at 3,000 rpm for 
10 min to separate the QDs via precipitation. The supernatant liquid phase was decanted to remove the excess rea-
gent. Subsequently, the QDs were re-dispersed in a non-polar toluene solution (10 mg/ml). The UV-Vis spectrum, 
PL spectrum and transmittance electron microscopy (TEM) images of the synthesized QDs (Supplementary 
information Fig. S5).

Device Fabrication.  The QLEDs that were fabricated consisted of an ITO anode (150 nm), a hole injec-
tion layer (HIL) (25 nm), a hole transport layer (HTL) (45 nm), a CdSe/ZnS QDs EML (20 nm), an electron 
transport layer (ETL) (35 nm), and an Al cathode (150 nm). The HIL was formed using poly(ethylenedioxythi-
ophene):polystyrene sulfonate (PEDOT:PSS, Baytron P AI 4083, H. C. Starck) on a patterned ITO substrate via 
spin coating and drying at 150 °C for 10 min. The HTL was formed using poly(N,N’-bis(4-butylphenyl)-N,N′​
-bis(phenyl)benzidine (poly-TPD, ADS 254BE, American dye source), is a good resistor for non-polar organic 
solvents such as toluene, and was dissolved in chlorobenzene to 0.5 wt%. After spin coating, the HTL was dried 
at 110 °C for 30 min under vacuum conditions. The QDs were dissolved in a toluene solution and spin-coated to 
form the EML. Annealing was performed for 30 min at 80 °C under vacuum conditions. The ZnO NPs solution 
was directly coated on the EML at 90 °C for 30 min under vacuum conditions to form the ETL. The ZnO NPs 
were synthesized via the sol-gel method (Supplementary information Fig. S6). Subsequently, the emissive area of 
the fabricated device was defined to 9 mm2. The characteristics of the fabricated QLEDs were measured using a 
computer-controlled voltmeter (Keithley 2400s source-meter) and a luminance meter (CS-100A).
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